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The dc transport problem in a polar crysal, in the range of optical mode scattering, is studied within a 
weak-coupling model for the electron-phonon interaction. A full variational calculation is performed in the 
presence of a magnetic field and carried out to high accuracy on a digital computer. It is stressed that the 
physical effects should be discussed in "magnetoconductivity," rather than conventional "magnetoresis-
tivity" terms, corresponding to the type of experimental arrangement frequently used for these materials. 
The model, which is, in principle, restricted to a small coupling constant (a<&l), has some interesting dispers
ive properties and is used as a working tool for an over-all picture of the transport problem in its full com
plexity, when a magnetic field is present. Some experimental aspects are discussed and it is suggested that 
a heuristic correction to the weak-coupling formulas might extend its practical range of applicability to 
higher values of a. This is illustrated with applications to AgBr and AgCl, w h e r e a t 2. 

I. INTRODUCTION 

IN an ionic crystal the conduction electrons interact 
rather strongly with the longitudinal polarization 

waves due to optical mode vibrations of the lattice. 
The strength of this interaction can be measured1 by a 
dimensionless coupling constant a— (m/2cohd)112 

X62(e00~~1— e^1), where es is the static dielectric con
stant of the crystal, e«, is the high frequency dielectric 
constant, <a is the frequency of the longitudinal optical 
modes, and m is the crystal band mass (here distin
guished from the free electron mass me). 

In the weak-coupling limit, a<<Cl, the picture which 
energes from standard first-order perturbation theory 
describes the drift mobility of the charge carriers as 
limited by first-order scattering processes in which a 
polar phonon is absorbed or emitted. At low tempera
tures the carriers undergo, thereby, highly inelastic 
scattering events. Howarth and Sondheimer2 argued 
that, under such conditions, it is not clear how to de
scribe the scattering in terms of a relaxation time. In
stead, they formally solved the Boltzmann equation by 
a variational procedure. The essential result of their 
calculation is a numerical function G{z) of the dimen
sionless variable z=ho)/KT=®/T. From this function 
one can calculate the conductivity (or the mobility) if 
one knows the appropriate parameters of the material 
(dielectric constants, etc.). Howarth and Sondheimer 
actually used the result of an earlier derivation3,4 of the 
matrix element for the scattering which neglected the 
contribution of the ion core electrons to the high fre
quency dielectric constant. This does not affect the 
function G(z) and is easily corrected; it is automatically 
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1 H. Frohlich, Advan. Phys. 3, 325 (1954). 
2 D. J. Howarth and E. H. Sondheimer, Proc. Roy. Soc. 

(London) A219, 53 (1953). 
3 H . Frohlich, Proc. Roy. Soc. (London) A160, 280 (1937). 
4 H. Frohlich and N. F. Mott, Proc. Roy. Soc. (London) A171, 

496 (1939). 

taken into account, for example, if one uses Frohlich's1 

Hamiltonian. 
The Howarth-Sondheimer model for the transport 

problem, which is, in principle, restricted to a<<Cl, has 
been very useful in many practical cases, as is illus
trated by Ehrenreich's extensive work,5 among others. 
Ehrenreich has extended the calculations to the type of 
isotropic but nonparabolic bands of the III-V com
pounds and has also included free carrier screening 
effects. This paper will not be concerned with either 
these or the recent extension6 to a many-ellipsoidal 
band structure. 

The present work is an attempt to study in detail the 
properties of the weak-coupling model for the dc trans
port problem in a polar crystal, without additional 
complications concerning band structure, etc. Moti
vated by current experimental work at the University 
of Illinois, it was felt that further study was necessary 
on certain questions connected with the weak-coupling 
model. 

The first question concerns the limits of practical 
applicability of the model, i.e., whether some correction 
may be devised which makes it work up to higher 
values of a. The variational calculation of the dc mo
bility is outlined in Sec. I I , where the notation is es
tablished for the extensions to follow. A heuristic cor
rection is introduced in the mobility formula, and this 
is then compared with experimental results for AgBr 
and AgCl where a = 2 . 

The second question concerns the relationship of the 
model to others in which polar scattering is described 
in terms of a constant relaxation time. At low tempera
tures it may be argued1 that a slow carrier, having ab
sorbed a phonon of very large energy, has a very high 
probability of immediately re-emitting it. This is the 
idea of resonant scattering7 in which absorption and 

5 H. Ehrenreich, J. Phys. Chem. Solids 2, 131 (1957); 8, 130 
(1959); J. Appl. Phys. Suppl. 32, 2155 (1961). 

6 D. J. Olechna and H. Ehrenreich, J. Phys. Chem. Solids 23, 
1513 (1962). 

7 T . D. Schultz, Phys. Rev. 116, 526 (1960); Technical Report 
No. 9, 1956, MIT Solid State and Molecular Theory Group 
(unpublished). 
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emission merge into one second-order process. The cal
culation for this type of elastic scattering yields a con
stant relaxation time independent of the kinetic energy 
of the carrier. With a single isotropic mass, there is 
then no dispersive behavior in the gas of carriers. 

Now, a magnetic field is a probe which can feel the 
difference between a dispersive and a nondispersive gas. 
With a single isotropic mass and a constant relaxation 
time, the resistivity is not changed by a magnetic field, 
whereas a nonzero magnetoresistivity is exhibited by 
the (dispersive) model of first-order inelastic scattering, 
as was pointed out by Lewis and Sondheimer.8 A simple 
observation of magnetoresistivity would seem a de
cisive experiment. However, in many polar materials 
this experiment is very hard to perform. In order to 
measure resistivity, as is usually done in a reasonably 
good conductor, one has to maintain a measurable 
steady current through the sample. Rather, the experi
mental arrangement which seems to be more convenient 
in these materials consists in maintaining an electric 
field inside the sample, and then measuring the 
(transient) drift of change. Thus, the ordinary concept 
of magnetoresistivity is irrelevant to the transport co
efficient actually measured in these conditions. As a 
matter of fact, both the dispersive and the nondispersive 
model exhibit a nonzero magnetoconductivity. These 
concepts, and other phenomenological relationships, are 
explained in Sec. I I I . 

One purpose of this work was to take a broader view 
and formulate the galvanomagnetic properties of the 
weak-coupling model in "magnetoconductivity lan
guage." I t is suggested that this should be the policy of 
future theories which might truly describe polarons 
(rather than weakly perturbed electrons), since this is 
likely to be the frame of the experimental information. 
Thus, for example, Tippins' recent work,9 which has 
elucidated the shape of the conduction band structure 
in AgBr, and in AgCl, is all magnetoconductivity work 
(although the measurements were performed at very 
low temperatures, where optical mode scattering is 
frozen out). 

The variational calculation outlined in Sec. I I is ex
tended in Sec. IV where detailed computations of the 
galvanomagnetic coefficients are performed. The im
plications of these calculations are discussed in Sees. IV 
and V, where some suggestions are made for future ex
perimental work. 

To sum up, this is the study of the properties of a 
model. I t is simple and not at all rigorous, but it has the 
practical advantage that the calculations can be per
formed at arbitrary temperatures and magnetic fields. 
I t can be used for an over-all picture of the dc transport 
problem in its full complexity. I t was thought that such 
a study might be a helpful guide for future developments. 

8 B. F. Lewis and E. H. Sondheimer, Proc. Roy. Soc. (London) 
A227 241 (1954). 

9 H. H. Tippins and F. C. Brown, Phys. Rev. 129, 2554 (1963). 

II. MOBILITY CALCULATION IN A 
DC ELECTRIC FIELD 

Howarth and Sondheimer's calculation is repeated by 
Ziman10 in a more concise fashion, in which some irrele
vant details of the collision term are omitted by apply
ing the variational method to the original form of the 
Boltzmann equation. This technique will be adopted 
here and the theory extended to the case of a magnetic 
field. Ziman's derivation of the mobility will be now 
outlined for the sake of establishing the notation. 

For a gas of carriers of wave vector k and kinetic 
energy E=ft2k2/2my the nonequilibrium distribution 
function is written as 

A=/ k°-* k—, (l) 
dE 

where fk°=Ae~E/KT is the equilibrium distribution. 
The basic quantity in this calculation is a quadratic 
form of the collision operator P , which represents the 
rate of entropy production due to collisions: 

($k\p$k)^ UkP$kdk 

= " / / {$k-$k+q}2/k°—dkdq. (2) 
Wya>KT2J J qk 

Here q is the phonon wave vector, 91 is the Bose-
Einstein distribution function [exp(— © | T) —1]_1, and 
7_ 1 , which is proportional to the dimensionless constant 
a, is defined so that it involves no mass parameter: 

1 co2/ 1 1 \ 
- = - ( . (3) 
7 47r\e00 es/ 

Changing to an integration over energy, the weighted 
volume element dk becomes 

1 /2m\3 /2 

dk=—(—) m&E. 
2irA ¥ J 

With an electric field £ of magnitude 8 and unit 
direction u, the appropriate form of <£>k is uk<£>, where 
<p is linear in 8 and is evaluated to successive orders of 
approximation with the variational technique. One 
expands <p and writes, in the nth order of approximation 

* k w = k - u ^ > = E Cr<Pr(k). (4) 

In this case the functions used were 

<Pr=k-uEr (5) 

corresponding to a power series expansion of <p. Equa-

10 J. M. Ziman, Electrons and Phonons (Clarendon Press, 
Oxford, 1962), Chap. 10. 
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t ions (2) and (4) give 

<*k<">|P*k<*>> = E Cr(<Pr\P<P.)c. 
r, s=0 

N 
=== / f CfL rs^s> W / 

r, s—0 

In terms of the dimensionless integrals 8rs of Howarth 
and Sondheimer (not to be confused with Kronecker's 
symbol), the result is, after some mathematical 
manipulations, 

2*fn*e2yiAe112* 
Prs- (KTy+*8rs^(?(KTy+%s. (7) 

3irfi5y 

The power dissipated in the collisions is supplied by 
the external field. From the drift term of the Boltzmann 
equation one obtains the rate of energy input through 
an integral of the form 

/ df*° , \ < —e v u $ k >. 
\ dE / 

Thus, when <£>k is expanded as in Eq. (4), one has to 
evaluate the integrals 

f dfk° 
3r=— I eYcpr dk. 

J dE 

Application of the variational principle then says that 
the unknown coefficients of <£>k

(iV) are obtained from the 
variational equations 

E PrsCs = Jr-uS. (8) 

The implication of this is that the total current J is, in 
the A"th approximation, 

J - E JrPrs-'h'U. (9) 
r,s=0 

The matrix terms Prs are given in Eq. (7). Defining 

The Bessel functions Kn are here to be understood as 
Kn(\z). One can now study the limits of high and low 
temperatures. 

The high-temperature limit (:s«l) is of academic 
interest only since it might mean actual temperatures 
of more than 1000°K, However, it is of some interest 

X r = r ( r + 5 / 2 ) / r ( 5 / 2 ) , evaluation of the integrals J r 

gives 
eAm^(KT)^ 

J r . u = = (KTY\r^g(KTy\r. (10) 
21/2^3/2^4 

The drift mobility (see Sec. I l l ) is 

M=(l /»e)u-J£- 1 , (11) 

where n is the carrier concentration. From Eqs. (8) 
to (11), one can write for the mobility calculated to 
iVth order: 

1 N 
M W = - £ ( J , 'U)(P-%(J S -U) 

fie T, s=o 

= ( E X ^ ^ X . . (12) 
\ne(9/ r, s=o 

Here 5 r s
_ 1 is the reciprocal of the matrix 5 of elements 

8rs. The last factor in parenthesis is a characteristic 
function of this model and has dimensions of mobility. 
This will be here called /z: 

g2 3y(KTy2 ez-\ 
_ f U , A = (13) 
net? 2 7 ' V / W / 2 e^z 

The mobility formula can then be written as 

M(*> = pF(tf>; F ^ > s E X ^ - % . (14) 
r, 5=0 

In this way, the successive approximations evaluate to 
different orders a dimensionless function F(z), whose 
relationship to Howarth and Sondheimer's function is 

16 
F(«) = — zet'er*G(z). (15) 

9?r 

The result can be finally expressed in terms of Bessel 
functions,11 which are tabulated and have known 
asymptotic expansions. The functions G(0) and G(1) are 
given by Howarth and Sondheimer. To second order 
one obtains from (14) 

to study the sequence 
z 9 111 217 

F(0) = _ ; /?(D = _ Z ; F(2)= S = /?(D (16) 
2 16 384 216 

in the high-temperature limit. 
11 G. N. Watson, A Treatise on the Theory of Bessel Functions 

(Cambridge University JPress, New York, 1922), p. 172, 

/ 37 165 217\ / 19 1081 \ / 23 299 \ 
s 6 +—s 4 + z2-\ ] i£ i 2 - ( 2s 5+— 23+ z jKxKo-l s 6+—2 4+ z2 )K0

2 

\ 4 4 8 / \ 4 3 2 / \ 4 8 / 

'35 75 \ /3 85 \ /47 117 \ / 3 183 \ 
—24+—s2+24 jKJ+l ~z5+—zs- lSz )K1

2K0-(--z*+ z2 JiTiiTo2—( -zH s3 )K0
3 

. 4 2 / \ 2 8 / \ 4 2 / \ 2 8 / 
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This means that 

M ( 2 ) ~ 1 . 0 1 M
( 1 ) ~ 1 . 1 3 M ( 0 ) ( S « 1 ) . (17) 

Thus, a zeroth-order approximation gives the correct 
temperature dependence and is very close in numerical 
value to the exact2 result F=zl6/9ir, which is almost 
equal to F&\ 

In low temperatures one obtains 
2i/2giz 2z 

/?(o) = . Fa) = —F(o). F(2) = F(1) (18) 
T1'2 3 

Thus, 
2s 

M ( 2 ) = = M ( l ) = = _ / x ( 0 ) > > / x ( 0 ) ( 2 > > 1 ) > ( 1 9 ) 
3 

The zeroth-order approximation is now very bad, while 
in first order one obtains the exact solution. The low-
temperature mobility formula is then, from (18) and 
(14): 

X(^w)3/2 

n = (e'-D. (20) 
25 /27rm3 /2 

This formula was also derived by Frohlich1 on the as
sumption of elastic resonance scattering. He obtained 
a constant relaxation time r— (2a<xffC)~x which leads to 
Eq. (20). However, if one calculates the relaxation time 
for the momentum of the carrier (rather than for the 
distribution) one obtains exactly three times the above 
result. 

The low-temperature mobility has been studied by a 
number of authors. In all treatments, even in "true 
polaron" theories, like that of Low and Pines,12 the 
conclusion is that /*oc (ez— 1), as one would expect on 
physical grounds from the phonon density number. 
Recently, a mobility calculation has been performed13 

using Feynman's model14 of the polaron. This is perhaps 
the best calculation so far performed for high applied 
frequencies, and it contains some interesting predictions 
for high a. However, the authors derived the dc mo
bility by taking the limit of zero frequency, and thus 
concluded that /*<* (ez— l ) /z . One would expect the 
results of a polaron theory to agree in the weak-coupling 
limit with the dc mobility obtained from the Boltzmann 
equation. The sequence of approximations shown in 
Eqs. (18) and (19) is interesting because it shows that 
a formula going like (ez—\)/z is obtained in zeroth 
order, which is known to be a bad approximation in this 
region ( ; O l ) , although it is quite good in high tem
peratures. The next approximation restores the simple 
exponential law for zS>i by introducing the factor 2z/3. 
Indeed, Kadanoff15 has recently reconsidered the 
Feynman model for the dc mobility and derived a result, 
valid in the low-temperature limit, which introduces 
precisely the factor 2z/S. 

12 F. E. Low and D. Pines, Phys. Rev. 98, 297 (1953). 
13 R. P. Feynman, R. W. Hellwarth, C. K. Iddings, and P. M. 

Platzmann, Phys. Rev. 124, 1007 (1962). 
14 R. P. Feynman, Phys. Rev. 97, 660 (1955). 
15 L. P. Kadanoff (private communication). 

The low-temperature region is very interesting for a 
physical discussion of the principles involved in the 
theory, but the experimental data are usually beset by 
all kinds of complications, such as additional scattering 
mechanisms and trapping of the carriers. Experime-
tally, the best region is often that of intermediate tem
peratures, which is theoretically difficult. The possi
bility of performing calculations at arbitrary tempera
tures is an attractive feature of the weak-coupling 
model. I t has often been claimed that this theory is not 
subject to any restrictions in temperature and is valid 
for arbitrary values of z. Upon reflection, this is not very 
obvious. One could support by physical arguments the 
idea that this model, while valid in very low and very 
high temperatures, might be unjustifiable, or at least 
at its worst, when T is close to ©. I t is, perhaps, more 
reasonable to regard the practical feasibility, rather 
than its justification, as the virtue of the model. With 
this proviso, one can perform the calculations at arbi
trary temperature with formulas (16) and (17) and the 
calculated values of F(z). The results of the present 
computation (Table I I I ) , performed to high accuracy 
with a digital computer, reproduce the numerical esti
mates of Howarth and Sondheimer in high and low 
temperatures, but yield somewhat higher values in the 
region Kz<2. 

For purposes of comparison of theory with experi
ment, it is necessary to first obtain a characteristic plot 
of the material: z versus T. Similarly, a second char
acteristic plot giving ji versus z can be evaluated. In so 
doing, the mass parameter contained in fL should be 
carried through. By definition, in this "nonpolaron" 
theory m is the crystal band mass of the electron. For 
not too strong coupling, the polaron mass ni* is given 
approximately by m* = tn(l+a/6). This can be de
rived, for example, from the low-temperature theory of 
Lee, Low, and Pines.16 Using a free-energy analysis, 
Yokota17 attempted to extend this theory to include 
finite temperature effects, and concluded that 

r a i 
m*=m\ i-| I (21) 

L 6(23l+l)3/2J 
which introduces a negligible correction at low tem
peratures (3l<Cl) but affects w* considerably by making 
it lighter as T increases. Van Heyningen's work18 shows 
that the Low-Pines low-temperature formula, when 
corrected with the Yokota factor, fits fairly well the 
observed drift mobility in AgCl from about 50°K 
(s=5.5) to300°K (2=0.77). 

In a purely heuristic manner, one might hope that 
the weak coupling theory is acceptable up to higher 
values of a if m is simply substituted by m*. (In the 
same spirit, one might hope that the Yokota factor 
could help beyond the low temperature region.) To be 

16 T. D. Lee, F. E. Low, and D. Pines, Phys. Rev. 90, 297 (1953). 
17 T. Yokota, Busseiron Kenkyo 69, 137 (1953). 
18 R. van Heyningen, Phys. Rev. 128, 2112 (1962). 
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FIG. 1. Plot of z vs T for AgBr and AgCl. 

sure, this is an incorrect procedure, equivalent to re-
normalizing the mass but not the coupling constant. 
There is no a priori reason why such a procedure should 
work well, and one would expect it to be worse, the 
higher a is. In so doing, one is roughly postulating a 
model of carriers which behave rather like polarons in 
their (heavier) inertial response to the driving force, 
while behaving rather like electrons in a time average 
over their complicated scattering events. 

AgCl and AgBr seem to have standard conduction 
band structures9,19 and the free carrier concentration in 
actual samples is sufficiently low to make the free 
carrier screening correction5 quite negligible. Thus, they 
constitute good materials to study the unmasked effects 
of the size of a ( « 2 ) . Also, samples can be prepared in 
which polar scattering seems to be fairly well estab
lished20 over a wide temperature range. Given the inter
esting size of a in these materials it was thought worth
while to perform a semiempirical mobility calculation 
for the experimental temperature range using Yokota's 
polaron mass in formula (13). 

From experimental data on the reststrahl frequency 
co, by Jones et al.,21 and from dielectric constant meas
urements by Eucken and Buchner22 at different tem
peratures one can evaluate co= (€s/eoo)1/2cof as a slowly 
varying function of T. Thus, the first characteristic 
plot (Fig. 1) was obtained for AgBr and AgCl. Next, 

19 G. Ascarelli and F. C. Brown, Phys. Rev. Letters 9, 209 
(1962). 

20 D. C. Burnham, F. C. Brown, and R. S. Knox, Phys. Rev. 
119, 1560 (1960). 

21 G. O. Jones, D. H. Martin, P. A. Mawer, and C. H. Perry, 
Proc. Roy. Soc. (London) A261, 10 (1961). 

22 A. Eucken and A. Buchner, Z. Physik. Chem. (Leipzig) 
B27, 343 (1934). 

one can evaluate / l a s a function of z. In the present 
calculation the polaron mass (21) carries with it the 
crystal band mass m. This parameter was adjusted by 
fitting the observed drift mobility in the way which 
will be explained below. The second characteristic plot 
(Fig. 2) was obtained with the values of m thus ad
justed. For the reasons explained in Sec. IV, only drift 
mobility data were considered, discarding low-field 
Hall mobility measurements. 

In AgCl, very good data exist due to Haynes and 
Shockley23 and to van Heyningen.18 The latter also 
estimated the mass parameter needed to fit his data 
with different theories. He found that Howarth and 
Sondheimer's weak-coupling formula was unable to 
explain the experimental results over the whole tem
perature range of the measurements. The curve calcu
lated by van Heyningen using the Howarth-Sondheimer 
formula is reproduced for comparison in Fig. 3 (dotted 
line). The full line is the result of the present calculation 
introducing the Yokota polaron mass instead of the 
crystal band mass m in Eq. (13). The mass m is then 
contained in the mobility formula in a more compli
cated fashion, as it also enters into the definition of a 
and is regarded as an adjustable parameter. Its value, 
given in line (b) of Table I, was obtained by adjusting 

TABLE I. Mass parameters (in units of me) estimated from ex
perimental data on the drift mobility of electrons in AgCl. Low-
temperature values for tn* and a. In case (a) no ra* would be con
tained in the model. The tabulated value is simply w( l+a /6 ) . 

(a)a 

(b)b 

(c)c 

0.48 
0.35 
0.29 

(0.67) 
0.47 
0.39 

2.4 
2.1 
1.9 

a Howarth-Sondheimer formula (reference 18). 
b Present calculation. 
« Low-Pines-Yokota formula (reference 18). 

the formula to fit the experimental data on the low-
temperature side. This results in quite a good agreement 
with the data around room temperature. The worst 

35 

30 

t" 
i2 0 

3 
•a. is 

10 
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I 

r 
, —,—,—,— 

• i i t 

,—,—,—;—n—,—, 

AgBr^ 

t . • 

-

/ -
/AgCl 

/ j 

. » 1 

FIG. 2. The function /x vs z, evaluated using the Yokota mass 
m* instead of m, and taking m — 0.26 me for AgBr and w = 0.35 
me for AgCl. 

23 J. R. Haynes and W. Shockley, Phys. Rev. 82, 935 (1951). 
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discrepancy with experiment amounts to about 30% 
and takes place when T<&. As argued above, this is 
the region in which one has least trust in the calculation. 
This, however, might well be fortuitous and could arise 
to some extent from poor data, derived from old meas
urements of the dielectric constants. Table I also shows 
that the mass parameter derived in the present calcu
lation is appreciably lower than that obtained with the 
Howarth-Sondheimer formula, and closer to the values 
estimated by van Heyningen using formulas based on 
intermediate coupling models for the polaron mobility. 

In AgBr, drift mobility data are available24 between 
about 77° and 200°K. When extrapolated to 300°K, 
they tend to agree with isolated measurements per
formed by other authors25,26 at that temperature. How
ever, the data so far available are not as good as in 
AgCl. They show appreciable spread among themselves 
and, on the low-temperature side, they soon tend to 
level off, possibly due to shallow trapping effects. On 
the other hand, the effective mass is now known ex
perimentally from the cyclotron resonance work of 
Ascarelli and Brown,19 which presumably measures the 
low-temperature polaron mass. 

Figure 4 shows the experimental mobility data for 
AgBr and two alternative theoretical curves obtained 

1000 

o 

~i r — i — i 1—i 1 

v" Exp. a 
o " b 

Theor. a) m/m =0.48 

2 3 4 

160 140 120 
T°K-

_i_ 

100 90 8 0 7 7 70 64.5 

_L_ _L_ 
7 8 9 10 II 12 13 14 15 16 

FIG. 3. Temperature dependence of the drift mobility of elec
trons in AgCl. Exp a: Haynes and Shockley. Exp b : van Heynin
gen. Theor a: Calculated by van Heyningen using the Howarth-
Sondheimer formula. Theor b : present calculation. 

24 L. Chollet and J. Rossel, Helv. Phys. Acta 32, 476 (1959); 
33, 627 (1960). 

26 J. Irmer and P. Siiptitz, Phys. Status Solidi 1, 481 (1961). 
26 C. Yamanaka, M. Saki, and T. Suita, J. Phys. Soc. Japan 11, 

605 (1956). 

1000 

100 

" i i i i i i n r i i i i 

Theor. with m/me = 0.26 
" " m/me=0.27 

J _ 

• 200 160 140 120 
T°K« 

_] 1 I L_ 
2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 

FIG. 4. Temperature dependence of the drift mobility of elec
trons in AgBr. Theoretical curves: Present calculation, with two 
different values of m/me. Experimental data: +, A, V , • , • , and 
O: Chollet-Rossel, 1959 and 1960, different samples; • with error 
flags, Irmer-Suptitz; o with error flags, Yamamaka-Sakai-Suita. 

in the present calculation. The calculation was done 
again using the Yokota polaron mass as for AgCl. The 
full line was adjusted to pass through some of the data 
reported by Chollet and Rossel,24 so as to fit the room-
temperature measurements by the other authors.25'26This 
resulted in a value of the mass parameter which over
estimates the experimental mass by about 24%. It is 
perhaps more reasonable to compromise with the lower 
mobility data. This was done in the dotted line, at the 
expense of overestimating the cyclotron resonance mass 
by about 31% (Table II, line b). 

TABLE II . Mass parameters (in units of me) estimated from 
experimental data on the drift mobility of electrons in AgBr. 
Low-temperature values for m* and a. In case (a) the value of 
m* means simply w ( l + a / 6 ) . 

(a)a 

(b)b 

(c)c 

Expd 

m 

0.43 
0.27 
0.30 

tn* 

(0.60) 
0.35 
0.39 
0.27 

a 

2.3 
1.9 
2.0 

a Howarth-Sondheimer formula adjusted to low-temperature data only 
(reference 19). 

b Present calculation. 
0 Low-Pines formula adjusted to low-temperature data only (reference 19). 
d Mass derived from cyclotron resonance (reference 19). 

The above numbers could still be improved, for 
example, by including terms of order a2 in the polaron 
mass. This, however, is not the purpose of this work. 
The main lesson from these numerical estimates seems 
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FIG. 5. Geometry for magneto-
conductivity analysis. 

T ? 

to be that a simple-minded use of the Boltzmann equa
tion and perturbation theory works fairly well up to 
higher values of a than allowed by the weak coupling 
criterion. If w* is simply used instead of m, it seems 
reasonable to expect quite good results up to a ~ 1 . This 
makes it worthwhile studying the properties of the 
model in detail. 

III. THE TRANSPORT COEFFICIENTS 
IN A MAGNETIC FIELD 

This section is devoted to the phenomenological 
aspects of the type of measurements in which £ is fixed. 
The vectors of interest are £ = <§u, H = M i and J = <r- 8, 
which can be expressed in any system of axes in the 
crystal. I t is convenient to consider the orthogonal set 
u, u', u" of Fig. 5, defined so that u '±h. With € fixed, 
the experiment amounts to measuring the components 

u J = u o " u £ ; u'-J = u'-o-u£; u " J = u " < r u S (22) 

Each component has a transport coefficient associated 
with it. For an isotropic gas of carriers in a magnetic 
field perpendicular to the electric field the quantity 
u- J" vanishes. 

The transport coefficient associated with u-J is the 
conductivity mobility, \xc : 

Mc= (ne) : U ' i f u ; }i=(ne)-1(T. (23) 

Here, y. is the mobility tensor, which does not depend 
on the carrier concentration. For H=0, the coefficient 
fjic is termed the drift mobility ju, as in Sec. I I . 

The second quantity of experimental interest is the 
Hall angle 0#, defined by 

tan<9iy=-
U'-jf 'D 

U-J U"(I'U 

From this one can define the Hall mobility, \m by 

/JLHH C u ' y u 
tan0#=- Mij= 

H u y u 
(24) 

Since u ' y u and ii-p-ii are invariant scalars, one can 
conveniently choose the reference frame to evaluate 
these formulas. 

The transport coefficients in the more conventional 
type of measurements (where J is fixed) are the re

sistivity p and Hall coefficient R. I t is easy to relate 
them to the two mobilities. One finds 

1 

neixc[\.+ (nHH/cy~] 

1 /< 1 

nec\ \xj1+ (fxHH/c)2 
(25) 

The second relationship will be considered in the next 
section. 

Now consider the nondispersive model, with constant 
isotropic r and m. The simplest choice of axes is that 
for which u = (1,0,0) and u ' = (0,1,0). The elements of 
the mobility tensor are then 

M i i = -

1+^H/cT 
- = /*22j 

nm/c 
Ml2 = 

l+ifxH/c)2 

Then, from (23) and (24), 

er 
~M2i; n = —. (26) 

m 

Vc=-
1+ifjiH/cy 

er 
(27) 

Thus, there is a magneto conductivity effect but the Hall 
mobility is equal to the drift mobility at all fields. How
ever, from (25): 

1 

ne\x 
R= — (28) 

nee 

The second equality is just the counterpart of the state
ment /XH=/X. The first equation means that, for the 
nondispersive model (constant r and m) there is no 
magnetoresistivity. 

The above considerations show that the difference 
between a dispersive and a nondispersive model is more 
subtle in magnetoconductivity terms than in magneto-
resistivity terms. A study of this question requires a 
detailed evaluation of the mobility tensor for the dis
persive model and an examination of its properties in 
terms of fxc and JU#. This is done in the following section. 

IV. MOBILITY CALCULATIONS IN A 
MAGNETIC FIELD 

Equation (4) expresses the fact that an electric field 
applied along a direction u upsets the equilibrium dis
tribution by imparting an amount of drift momentum 
in the direction u, to an extent measured by the function 
(p. If a magnetic field is present in an arbitrary direction 
h (Fig. 5), one expects drift momentum to be imparted 
along u, u ' and u", by various amounts given by func
tions (p, <pf, and <p", respectively. The expansion of 3>k 
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in the Nth approximation becomes then 

$k(Ar) = E CrU'kE'+'E c/W'kEr' 

+ £ c/ 'V-kE'" . (29) 
r "=0 

This can be written as 

$ k w : 

ZN+2 

p=0 
(30) 

with the convention that bp and \pp correspond to the 
cr and ipr in Eq. (4) with the appropriate number of 
primes as one spans the total set {^P}. 

The magnetic field is represented in the transport 
equation by the magnetic operator 

M=-
e a/kc 

fie dE 
(vXH)-Vk. 

The equation to be solved is then 

£<S>k== (P+Af)$k= -e v u £ . 
dE 

The way in which the variational principle is ex
tended to this equation is explained in Ziman's book10 

(Chap. 12). The "entropy production'' (<l>k|.£<l>k) does 
not obey a maximum principle because the operator M 
is antisymmetric or, more physically, because the 
Lorentz force does not perform work explicitly. While 
not having a definite sign, one can still establish a 
variational principle for a modified expression of the 
form i{($k*|L<l>k)+<$k|i*^k*)}, where conjugation 
would formally correspond to inversion of the magnetic 
field. This expression becomes equal to the standard 
rate of entropy production once the steady state has 
been reached. By this device, independent variation of 
<£k* yields a Boltzmann equation for <£k and vice versa. 

In a practical application of the method, one de
termines the coefficients bp of the expansion of <£k

(iNr), 
Eq. (30) by the resulting variational equations, which 
constitute a formal extension of Eqs. (8), and are 

7 ,«• LPffb(r=J<r'Xl&. (31) 

Lewis and Sondheimer8 made a first attempt to study 
the transport problem with polar scattering in a mag
netic field. Their work was restricted to the isotropic 
model under consideration and to the case H ± €. Then 
they used the well-known device of employing the 
complex rotation in the plane of € and £XH. (This 
device would not be so obvious in a more general case, 
where the third dimension has to be explicitly con
sidered. Instead, an algebraic method will be presently 
proposed to include the three dimensional case.) In 

their notation, Lewis and Sondheimer expanded the 
function <3>k in a form equivalent to Eq. (30) (without 
a term in u") and used, purely on the grounds of 
plausibility, a set of equations similar to Eq. (31) of 
this paper. For the case HJL 8 of the scheme developed 
here, Lewis and Sondheimer's results turn out to be 
equivalent to the results of the present calculation to a 
first-order approximation. This point will be mentioned 
again. 

Now with the method of calculation. With the same 
notation as in Sec. II, the matrix terms Prs are sub
stituted by Lp(T=Pp<T+Mp<7. These then form a matrix 
with 3(Af+l) rows and columns. It is easily seen from 
symmetry considerations that the operator P only has 
matrix terms between functions of the same subset. It 
is practical to think of the 3(Ar+l) by 3(Af+l) matrix 
as a 3X3 supermatrix whose elements are matrices 
of (N+l) rows and columns. The supermatrix of P is 
then diagonal and the three diagonal elements are equal 
to the (N+l) by (iV+1) matrix P of Sec. II, i.e., 

P 0 0 

0 P 0 

O O P 

From the structure of the operator 1$ it is also seen 
by symmetry considerations that it only has matrix 
terms between functions of different subsets. Specifi
cally, the supermatrix of $[ takes the "off-diagonal," 
antisymmetric form 

0 M cos^ 0 

-Mcosif/ 0 — Jkfsin^ 

0 M sin^ 0 

\\Mpff\\-

Here, M is a (N+l) by (iV+1) matrix of elements 
given by 

cosi/Mij^((pi\M(p/) 

eH cosiA r dfk° 
/ (u • ky—^-E^Ak. (32) 

mc dE 

In this scheme M is clearly a symmetric matrix. Trans
forming (31) to an integration over energy, the Mi/s 
can be written as follows: 

Mij^miKry^Tij, 

where 

r(*+j+f) MH-U" 
Yij= ; 9 T C = - ( P - — — = - ( P F . (33) 

r(i-) c 
The second equality defines the dimensionless variable 
F. 
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The calculations are greatly simplified by the fact 
that the supermatrix is blocked off in matrices which 
are only P or only M. This provides a natural way to 
disentangle M and P for arbitrary orientation of H. 
Moreover, the scalars J^-u of Eq. (31) are obtained 
from the same vector integral of (10) with the corre
sponding function \pp. Again, for symmetry reasons, 
this is zero unless \f/p is one of the functions <pr of the 
first subset. This simplifies further the evaluation of the 
transport coefficients. The mobility tensor in the Nth-
order approximation, obtained from Eq. (31) is 

1 N 
V = V (H)=— E JpLPrxh . 

ne P. *=o 

(34) 

In order to invert the supermatrix L one simply has to 
solve the set of linear algebraic equations which arise 
from the condition that LLr1 must give the unit super-
matrix, i.e., if I is the unit matrix of (iV+1) rows and 
columns: 

P Mcos;// 0 

- M cos^ P —M sin^ 

0 M sin^ 0 

A B C 

-B D E 
-C -E F 

-C -E F 

I 

0 

0 

0 

/ 

0 

0 

0 

/ 

(35) 

The resulting set of linear equations for the unknown 
matrices A, B,- • -F is easily solved by an obvious ex
tension of the procedure one would use with ordinary 
numbers and the unknown matrices can then be written 
in terms of P, P~l, M, and M~l. The matrix P was 
already inverted in the study of the problem for 11=0, 
and the matrix M is essentially a matrix of gamma 
functions and is much easier to handle. 

Furthermore, it is unnecessary to know all the 
matrices of L~l. For the magnetoconductivity measure
ments one is interested in the three scalars U"p*u, 
u ' y u , and u " ' y i i . The vectors Jp only have com
ponents on u, u', and u", for ypp belonging to {<pr}, 
{<p'r

f}, and {<£>'/'}, respectively. I t follows that 

1 N 
u . l f ( i v ) . u = = _ £ JruArsJsu, 

ne r, s=o 

1 N 
u ' V ^ - u - E Jr-uBrsJs-u, (36) 

ne r, s=o 

1 AT 

u". v <*>.u= E Jr-nC„J a-u. 
ne r, s=o 

Thus, it is only necessary to know three matrices of L_1, 
namely, A, B, and C. 

Having established how the calculation can be done 
for arbitrary angle between H and £, the formulas will 
now be evaluated for H_LS. Then cos^= l and the 
solution of (35) is 

A=(MS)~l; B=-(PS)~1; S=P~lM+M~lP. (37) 

From (23), (24), (36), and (37), the two mobilities are, 
in the iVth approximation, 

1 
0 W = _ E ir'U{MS)rS~

lis'M, 
ne r> s—o 

C r, s 0 

(38) 

JJLH (A0 = -

H nefx, (AD 

From the elements 8rs and Trs, one has the dimension-
less matrices 6, T and their reciprocals. Changing from 
the physical variables (T,H) to the dimensionless 
variables (z,Y) one can define the dimensionless matrix 

i / s l ^ S + P f r - T = i>(s, 7 ) . (39) 

I t will be remembered that, in this case, Y = jlH/c. Re
calling Eqs. (7), (8), (13), and (32) one can finally 
write the two mobilities in the form 

lxc = jxFc(z,Y); IXH=P<FH(Z,Y), 

where in the A"th approximation, 

FcW(z,Y)= E \r(Tv)-i\s=(Tv-%o 
r, s=0 

(N) 

T(N) (z,Y)-
r, s 0 

Fc(iV)feF) 

(40) 

(41) 

(rz,-1r1r)oo(^) 

(r.-1)oo(iV) 

The last equalities follow from the fact that X r = r r 0 . 
When # = 0 , Fe(zfl) is the function F(z) of Sec. I I . 

I t is trivial to see that Eqs. (40) read the same as 
Eqs. (27) of the nondispersive model only if the func
tions of (41) are evaluated to lowest order. But it was 
seen in Sec. I I that this is a bad approximation, except 
at very high temperatures. This approximation, on the 
other hand, is exact in the limit of very high magnetic 
fields. If one ignores quantization effects, this is to be 
expected on physical grounds: in very high fields the 
details of the scattering become relatively unimportant. 
In this (high-field) limit, Eqs. (41) give 

Fc(N)^Y-z(rr-l5)o XN) ( "^ 
= I — 1 Soo, 

\0H/ 

FH
{N)=Y-

(rr-155~1r)00
(iV) 1 

2 

(rr-i8)0o(W) Soo' 

(42) 
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showing that the zeroth approximation is, indeed, 
exact. A simple relationship holds then for the two mo
bilities, namely, 

(H- >)• 

From (15), this means that 

-necR=l (H- >). 

(43) 

(44) 

On the other hand, in the low-field limit one has from 
(41) thatMtf(s,0)>/ic(s,0), or -necR(zfi)>l. 

The low-field Hall mobility is a quantity of con
siderable experimental interest. Its ratio to the drift 
mobility was estimated by Lewis and Sondheimer, in 
the form —necR(zfi). As explained above, their estimate 
is equivalent to the first-order approximation of the 
scheme developed in this paper. I t will presently be 
seen that this approximation is still far from accurate, 
although it displays qualitatively the distinct features 
of the dispersive model. Delves27 used a numerical pro
cedure directly on the Boltzmann equation and esti
mated — necR(zfi) for three isolated values of z. He 
obtained somewhat higher values than Lewis and 
Sondheimer. 

The calculation outlined above was programmed for 
a digital computer to evaluate fully Fc(z,Y) and 
FH(z,Y) to third order, i.e., with 4X4 matrices. From 
the two characteristic plots, z(T) and p,(z) one can read 
the dimensionless variables in terms of T and H for a 
given material. The ranges of z and Y were chosen so 
that, from representative values of jx for AgBr and 
AgCl, they would correspond roughly to 2 0 ° K < r 
<300°K and 0 < # < 6 X 1 0 4 G. Table I I I gives the 
results for values of z chosen so as to correspond to 
likely experimental conditions. The value of s = 1 0 is 
also included to indicate the trend in the temperature 
dependence of the galvanomagnetic effects and for 
eventual comparison with the results of more advanced 
theories for stronger coupling. Obviously, low tempera
tures are required for the mobilities to be appreciably 
modified by the magnetic field. I t is seen in Table I I I 
that, at r = @ / 3 , for the maximum values of Y which 
have been used the conductivity mobility only decreases 
by a few percent, and the Hall mobility still remains 
practically unchanged. 

In order to look for the distinctive features of the 
dispersive model (e.g., an appreciable decrease in the 
Hall mobility) one should seek low temperatures, as 
much as possible, and effectively high magnetic fields. 
From Eqs. (42), a field intensity is effectively high for 
a material when FCFH becomes comparable to F~2. 
From the data of Sec. I I and Table I I I one would guess 
that this is roughly the case for AgCl at r « 7 0 ° K and 
# = 6 X 1 0 4 . Under these conditions one can probably 
ignore high-field quantum effects. Assuming m = 0A 
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FIG. 6. Temperature dependence of the ratio JHH (Z,0)//ZC(Z,0) ; o : 
Delves, numerical work; • : Delves, assuming roc£1/2. Dashed 
line: Lewis and Sondheimer, first-order approximation; + : Lewis 
and Sondheimer, second-order approximation. Full line: present 
work, third-order approximation. 

me, the spacing between Landau levels can be estimated 
as 2.8X10 -15 erg, which is to be compared with 
iCT=9.7XlO-1 5erg. 

Table I I I also gives the values of Fc(zfi), which can 
be compared through Eq. (15) with Howarth and 
Sondheimer's estimate for their function e~^G(z). The 
other quantity of experimental interest in low fields is 
FH(Z,0), if one is interested in the low-field Hall mo
bility, or FH(zfl)/Fc(z,0), which gives fiH(z,0)/fxc(zfi) 
as can be seen from Eq. (40). This ratio is plotted as a 
function of z in Fig. 6, where it is compared with pre
vious estimates. I t is seen that the convergence ob
tained with the power series expansion is fairly good in 
high and low temperatures, but is somewhat poor at 
intermediate temperatures. This is typically the bad 
region; it is also in this range that Fc(z,0) turns out to 
be a few percent higher than in previous approximations. 

Very little experimental work has been done so far to 
search for a check on the facts predicted in Fig. 6. Some 
support for this may be provided by the recent work of 
Hals ted et a/.28 on CdTe. In this material the estimated 
value of a is 0.39, and the weak-coupling model should 
be appropriate. The authors of reference 28 measured 
the low-field Hall mobility over a certain temperature 
range. The drift mobility calculated with Howarth and 
Sondheimer's function turned out to be systematically 
lower. Delves' isolated points were used for an approxi
mate interpolation to estimate the ratio /Z#(2,0)//JC(2; ,0). 
When the calculated values of fic(zfi) were multiplied 
by this factor the result was larger in good agreement 
with experiment. Since the theoretical values of fj,c(zfi) 
are somewhat underestimated when the Howarth-
Sondheimer function is used, the same result is com
patible with a lowering of Delves' numerical values 

r R. T. Delves, Proc. Phys. Soc. (London) 73, 572 (1959). 
28 B. Segall, M. R. Lorenz, and R. E. Halsted, Phys, Rev. 129, 

2471 (1963). 
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TABLE III. The functions Fc(z,Y) and FH(Z,Y) evaluated to third-order approximation. The number following " 5 " indicates the 
power of 10 with which the preceding number is to be multiplied. The ratio FH(Z,0)/FC(Z,0) is plotted in Fig. 6. The functions Fc(z,Y) 
and FH(Z,Y) can be used to compute the mobilities according to Eq. (40). 

z 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 
0.95 
1.00 
1.05 
1.10 
1.15 
1.20 
1.30 
1.40 
1.60 
1.80 
2.00 
2.30 
2.60 
3.00 
3.50 
4.00 
5.00 
5.50 
6.00 
6.50 
7.00 
7.50 
8.00 
8.50 
9.00 

10.00 

Fo(zfi) 

3.6995-1 
4 .0265-1 
4 .3685-1 
4 .7285-1 
5.1075-1 
5.5085-1 
5.9325-1 
6.3835-1 
6.8575-1 
7.3705-1 
7.9135-1 
8.4885-1 
9.7535-1 
1.11850 
1A62E0 
1.89550 
2A36E0 
3.49350 
4.91750 
7.56050 
1.2485+1 
1.9955+1 
4.7675+1 
7.1515+1 
1.0595+2 
1.5505+2 
2.2475+2 
3.2285+2 
4.6035+2 
6.5195+2 
9.1795+2 
1.3035+2 

Y 

5.3595-
1.0725-
2.1445-
3.2155-
4.2875-
5.3595-
6.4315-
7.5035-
8.5755-
9.6465-
1.0725-
1.1795-
1.2865-
1.3935-
1.5005-
1.6085-
1.7155-
1.8225-
1.9295-
2.0365-
2.1445-
2.3585-
2.5725-
2.7875-
3.0015-
3.4305-
3.8595-
4.2875-
4.8235-
5.3595-
5.8955-
6.4315-

-4 
-3 
-3 
-3 
-3 
-3 
-3 
-3 
-3 
-3 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 

Z=3.0 
5C 

7.5595+0 
7.5595+0 
7.5565+0 
7.5525+0 
7.5475+0 
7.5395+0 
7.5315+0 
7.5205+0 
7.5095+0 
7.4955+0 
7.4805+0 
7.4645+0 
7.4465+0 
7.4265+0 
7.4065+0 
7.3845+0 
7.3605+0 
7.3355+0 
7.3095+0 
7.2815+0 
7.2535+0 
7.1915+0 
7.1265+0 
7.0565+0 
6.9825+0 
6.8235+0 
6.6535+0 
6.4725+0 
6.2375+0 
5.9955+0 
5.7505+0 
5.5055+0 

FH 

9.4075+0 
9.4075+0 
9.4075+0 
9.4075+0 
9.4065+0 
9.4065+0 
9.4055+0 
9.4055+0 
9.4045+0 
9.4035+0 
9.4025+0 
9.4015+0 
9.4005+0 
9.3985+0 
9.3975+0 
9.3965+0 
9.3945+0 
9.3925+0 
9.3905+0 
9.3885+0 
9.3875+0 
9.3825+0 
9.3785+0 
9.3725+0 
9.3675+0 
9.3555+0 
9.3415+0 
9.3265+0 
9.3055+0 
9.2815+0 
9.2565+0 
9.2285+0 

Y 

5.4675-
1.0935-
2.1875-
3.2805-
4.3745-
5.4675-
6.5615-
7.6545-
8.7475-
9.8415-
1.0935-
1.2035-
1.3125-
1.4215-
1.5315-
1.6405-
1.7495-
1.8595-
1.9685-
2.0775-
2.1875-
2.4055-
2.6245-
2.8435-
3.0625-
3.4995-
3.9365-
4.3745-
4.9205-
5.4675-
6.0145-
6.5605-

-4 
-3 
-3 
-3 
-3 
-3 
-3 
-3 
-3 
-3 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 

Z=3.5 
Fc 

1.2485+1 
1.2485+1 
1.2475+1 
1.2455+1 
1.2435+1 
1.2395+1 
1.2355+1 
1.2315+1 
1.2265+1 
1.2205+1 
1.2135+1 
1.2065+1 
1.1985+1 
1.1905+1 
1.1815+1 
1.1725+1 
1.1625+1 
1.1525+1 
1.1425+1 
1.1315+1 
1.1195+1' 
1.0965+1 
1.0715+1 
1.0455+1 
1.0195+1 
9.6575+0 
9.1185+0 
8.5875+0 
7.9475+0 
7.3425+0 
6.7795+0 
6.2615+0 

FH 

1.5315+1 
1.5315+1 
1.5315+1 
1.5315+1 
1.5305+1 
1.5305+1 
1.5305+1 
1.5305+1 
1.5305+1 
1.5295+1 
1.5295+1 
1.5295+1 
1.5285+1 
1.5285+1 
1.5275+1 
1.5275+1 
1.5265+1 
1.5255+1 
1.5255+1 
1.5245+1 
1.5235+1 
1.5225+1 
1.5205+1 
1.5185+1 
1.5165+1 
1.5125+1 
1.5075+1 
1.5025+1 
1.4945+1 
1.4865+1 
1.4775+1 
1.4685+1 

F 

5.8235-
1.1645-
2.3295-
3.4945-
4.6565-
5.8235-
6.9875-
8.1525-
9.3165-
1.0485-
1.1645-
1.2815-
1.3975-
1.5135-
1.6305-
1.7475-
1.8635-
1.9805-
2.0965-
2.2135-
2.3295-
2.5625-
2.7955-
3.0285-
3.2615-
3.7275-
4.1925-
4.6585-
5.2405-
5.8235-
6.4055-
6.9875-

-4 
-3 
-3 
-3 
-3 
-3 
-3 
-3 
-3 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 

Z=4.0 
5C 

1.9955+1 
1.9945+1 
1.9895+1 
1.9815+1 
1.9705+1 
1.9565+1 
1.9395+1 
1.9205+1 
1.8985+1 
1.8735+1 
1.8475+1 
1.8195+1 
1.7895+1 
1.7575+1 
1.7255+1 
1.6915+1 
1.6575+1 
1.6215+1 
1.5865+1 
1.5505+1 
1.5145+1 
1.4425+1 
1.3715+1 
1.3025+1 
1.2365+1 
1.1115+1 
9.9815+0 
8.9815+0 
7.8995+0 
6.9825+0 
6.2065+0 
5.5495+0 

FH 

2.4005+1 
2.4005+1 
2.4005+1 
2.4005+1 
2.3995+1 
2.3985+1 
2.3985+1 
2.3975+1 
2.3965+1 
2.3945+1 
2.3935+1 
2.3915+1 
2.3905+1 
2.3885+1 
2.3865+1 
2.3845+1 
2.3825+1 
2.3795+1 
2.3775+1 
2.3745+1 
2.3725+1 
2.3665+1 
2.3605+1 
2.3535+1 
2.3465+1 
2.3305+1 
2.3135+1 
2.2955+1 
2.2705+1 
2.2445+1 
2.2175+1 
2.1895+1 

which would bring them very close to the full line of 
Fig. 6. In any event, this experiment seems to support 
the idea that MH(X0)>/JC (J2 ,0) , which is associated with 
dispersive behavior in a magnetic field. I t would be 
interesting to see more work of this kind. 

V. FINAL CONSIDERATIONS 

From an over-all picture of the dc transport problem 
in terms of a weak-coupling model it seems that a more 
careful study of the galvanomagnetic properties would 
be highly desirable and informative. Better polaron 
theories should pay close attention to the question of 
dispersive behavior; so far, the models leading to a 
constant relaxation time have been mainly worked out 
for zero magnetic field and it might be that some of the 
physical arguments need revision when a magnetic field 
is present. 

The experimental information so far available is often 
rather incomplete, its main weakness being lack of 
systematics. The temperature dependence of the low-
field Hall coefficient still offers a wide scope for experi
mental work. Alternatively, the same worker should 
attempt to measure the two mobilities iic{zfi) and 
MH(S,0) for the same samples. In either case a wide 
temperature range should be interesting, going up to 

T>®. The challenge for the theories in the absence of 

a magnetic field is now in the intermediate temperature 

range. In planning magnetoconductivity experiments, 

it might be worthwhile making an effort to achieve 

effectively high magnetic fields. The field dependence 

of the Hall angle should be particularly interesting. A 

systematic program for galvanomagnetic measurements 

in AgBr and AgCl would provide very timely and 

relevant information. 

Another aspect of the work described in this paper 

concerns the use of the variational techniques for prac

tical calculations. The convergence, with the power 

series expansion, is very good in the two extreme limits 

H=0 and H -^ oo. However, it is rather slow at inter

mediate and low fields, as can be seen from the succesive 

approximations to the Hall coefficient in Fig. 6. I t is an 

open possibility that other variational methods, like 

the ones recently developed by Baylin29 and Blount30 

might prove more practical, although this still has to 

be tested. The improvement of the convergence is 

probably to be sought rather in the expansion functions, 

29 M. Baylin, Phys. Rev. 126, 2040 (1962). 
30 E. I. Blount (private communication). 
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TABLE III.—Continued. 

Y 

6.769E-
1.354E-
2.708E-
4.062E-
5.415E-
6.769E-
8.123E-
9.477E-
1.083E-
1.218E-
1.354E-
1.489E-
1.625E-
1.760E-
1.895E-
2.031E-
2.166E-
2.301E-
2.437E-
2.572E-
2.708E-
2.978E-
3.249E-
3.520E-
3.791E-
4.332E-
4.874E-
5.415E-
6.092E-
6.769E-
7.446E-
8.123E-

-4 
-3 
-3 
-3 
-3 
-3 
-3 
-3 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 

Z = 5.0 
Fc 

4.760E+1 
4.739E+1 
4.659E+1 
4.532E+1 
4.365E+1 
4.169E+1 
3.952E+1 
3.725E+1 
3.495E+1 
3.268E+1 
3.049E+1 
2.840E+1 
2.643E+1 
2.460E+1 
2.290E+1 
2.134E+1 
1.990E+1 
1.859E+1 
1.738E+1 
1.628E+1 
1.528E+1 
1.351E+1 
1.203E+1 
1.077E+1 
9.706E+0 
8.006E+0 
6.727E+0 
5.741E+0 
4.794E+0 
4.070E+0 
3.501E+0 
3.046E+0 

FH 

5.533E+1 
5.532E+1 
5.529E+1 
5.523E+1 
5.515E+1 
5.505E+1 
5.493E+1 
5.479E+1 
5.464E-H 
5.446E+1 
5.426E+1 
5.405E+1 
5.383E+1 
5.359E+1 
5.334E+1 
5.308E+1 
5.281E+1 
5.254E+1 
5.225E+1 
5.196E+1 
5.166E+1 
5.106E-H 
5.046E+1 
4.984E+1 
4.925E+1 
4.808E+1 
4.697E+1 
4.595E+1 
4.479E+1 
4.37 6 E + 1 
4.286E+1 
4.206E+1 

Y 

7.917E-
1.583E-
3.167E-
4.750E-
6.333E-
7.917E-
9.500E-
1.108E-
1.267E-
1.425E-
1.583E-
1.742E-
1.900E-
2.058E-
2.213E-
2.375E-
2.533E-
2.692E-
2.850E-
3.008E-
3.167E-
3.483E-
3.800E-
4.117E-
4.433E-
5.067E-
5.700E-
6.333E-
7.125E-
7.917E-
8.708E-
9.500E-

-4 
-3 
-3 
-3 
-3 
-3 
-3 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 

Z=5.5 
Ec 

7.120E+1 
7.031E+1 
6.694E+1 
6.202E+1 
5.628E+1 
5.035E+1 
4.468E+1 
3.949E+1 
3.490E+1 
3.090E+1 
2.745E+1 
2.449E+1 
2.194E+1 
1.976E-H 
1.787E+1 
1.624E+1 
1.482E+1 
1.358E+1 
1.249E+1 
1.153E+1 
1.067E+1 
9.235E+0 
8.073E+0 
7.121E+0 
6.330E+0 
5.102E+0 
4.201E+0 
3.520E+0 
2.877E+0 
2.396E+0 
2.026E+0 
1.735E+0 

FH 

8.149E+1 
8.145E+1 
8.131E+1 
8.108E+1 
8.076E+1 
8.037E+1 
7.990E+1 
7.937E+1 
7.879E-H 
7.817E+1 
7.751E+1 
7.683E+1 
7.613E+1 
7.542E+1 
7.471E+1 
7.400E+1 
7.331E+1 
7.262E+1 
7.195E+1 
7.130E+1 
7.067E+1 
6.947E+1 
6.836E+1 
6.735E+1 
6.642E+1 
6.480E+1 
6.346E+1 
6.234E+1 
6.119E+1 
6.024E+1 
5.944E+1 
5.87 6E+1 

Y 

3.000E-
6.000E-
1.200E-
1.800E-
2.400E-
3.000E-
3.600E-
4.200E-
4.800E-
5.400E-
6.000E-
6.600E-
7.200E-
7.800E-
8.400E-
9.000E-
9.600E-
1.020E-
1.080E-
1.140E-
1.200E-
1.320E-
1.440E-
1.560E-
1.680E-
1.920E-
2.160E-
2.400E-
2.700E-
3.000E-
3.300E-
3.600E-

-3 
-3 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 

Z=10.0 
Fc 

6.110E-J-1 
1.585E+1 
4.037E+0 
1.826E+0 
1.050E+0 
6.902E-1 
4.941E-1 
3.755E-1 
2.980E-1 
2.446E-1 
2.060E-1 
1.770E-1 
1.547E-1 
1.370E-1 
1.227E-1 
1.109E-1 
1.010E-1 
9.254E-2 
8.528E-2 
7.896E-2 
7.340E-2 
6.408E-2 
5.655E-2 
5.035E-2 
4.514E-2 
3.691E-2 
3.073E-2 
2.596E-2 
2.139E-2 
1.790E-2 
1.518E-2 
1.303E-2 

FH 

1.733E+3 
1.720E+3 
1.700E+3 
1.673E+3 
1.638E+3 
1.595E+3 
1.548E+3 
1.497E+3 
1.444E4-3 
1.391E+3 
1.338E+3 
1.287E+3 
1.238E+3 
1.191E+3 
1.147E+3 
1.106E+3 
1.067E+3 
1.032E+3 
9.990E+2 
9.686E+2 
9.406E+2 
8.908E+2 
8.484E+2 
8.123E+2 
7.814E+2 
7.321E+2 
6.950E+2 
6.666E+2 
6.397E+2 
6.194E+2 
6.037E+2 
5.912E+2 

whose choice constitutes the hard core of the practical 

difficulties. A simple power series expansion is not very 

good for this problem. There are indications, from 

current work at the University of Illinois, that other 

choices can improve the convergence considerably. This 

seems to be the real difficulty with variational calcula

tions at the present time. 
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